MATH 110 - SOLUTIONS TO THE SECOND PRACTICE MIDTERM

PEYAM TABRIZIAN

(1) (a) Write out the definition of isomorphic vector spaces

Definition: Two vector spaces V and W are said to be isomorphic if there exists a linear transformation $T: V \longrightarrow W$ which is both injective and surjective.

- Injective means that whenever $T(v)=0$ for $v \in V$, then $v=0$.
- Surjective means that for all $w \in W$, there exists $v \in V$ such that $T(v)=w$
(b) Prove that if the dimension of two finite-dimensional vector spaces is equal, then the two vector spaces are isomorphic

Suppose V and W are such that $\operatorname{dim}(V)=\operatorname{dim}(W)=n<\infty$.
Let $\left(v_{1}, \cdots, v_{n}\right)$ be a basis for V and $\left(w_{1}, \cdots, w_{n}\right)$ be a basis for W.
Define $T: V \rightarrow W$ to be the unique linear transformation with the property that $T\left(v_{i}\right)=w_{i}$. The existence of such a linear transformation is guaranteed by the linear extension lemma (exercise 3 in Homework 6) ${ }^{1}$.

We claim that this T gives us the desired isomorphism. For this, the only things we need to check is that T is injective and T is surjective.
T is injective:
$\overline{\text { Suppose } T(v)}=0$ for $v \in V$.
Then, since $\left(v_{1}, \cdots, v_{n}\right)$ is a basis for V, it spans V, hence there exist constants a_{1}, \cdots, a_{n} such that $v=a_{1} v_{1}+\cdots+a_{n} v_{n}$

But then:

$$
\begin{aligned}
T(v)=0 & \Rightarrow T\left(a_{1} v_{1}+\cdots+a_{n} v_{n}\right)=0 \\
& \Rightarrow a_{1} T\left(v_{1}\right)+\cdots+a_{n} T\left(v_{n}\right)=0 \\
& \Rightarrow a_{1} w_{1}+\cdots+a_{n} w_{n}=0
\end{aligned}
$$

[^0]Where the third implication followed from the fact that $T\left(v_{i}\right)=w_{i}$ for $i=1, \cdots, n$.

But since $\left(w_{1}, \cdots, w_{n}\right)$ is a basis for W, it is linearly independent, and hence $a_{1}=\cdots=a_{n}=0$.

But then:

$$
v=a_{1} v_{1}+\cdots+a_{n} v_{n}=0 v_{1}+\cdots+0 v_{n}=0
$$

So $v=0$, and hence T is injective.
$\underline{\mathrm{T} \text { is surjective }}$ Let w be an arbitrary vector in W.
Then, since $\left(w_{1}, \cdots, w_{n}\right)$ is a basis for W, it spans W, and hence there exist constants a_{1}, \cdots, a_{n} such that $w=a_{1} w_{1}+\cdots+a_{n} w_{n}$.

Define $v=a_{1} v_{1}+\cdots+a_{n} v_{n}$.
Then:

$$
\begin{aligned}
T(v) & =T\left(a_{1} v_{1}+\cdots+a_{n} v_{n}\right) \\
& =a_{1} T\left(v_{1}\right)+\cdots+a_{n} T\left(v_{n}\right) \\
& =a_{1} w_{1}+\cdots+a_{n} w_{n}=w
\end{aligned}
$$

Where the third equality followed from the fact that $T\left(v_{i}\right)=w_{i}$ for $i=$ $1, \cdots, n$.

So we found v such that $T(v)=w$, and hence T is surjective.
Therefore, since T is an injective and surjective linear transformation, and therefore by definition, V is isomorphic to W.
(2) (a) Write out the definition of an invariant subspace.

Definition: If $T: V \longrightarrow V$ is a linear transformation and U is a subspace of V, then U is said to be invariant under T if whenever, u is in U, then $T(u)$ is in U.
(b) Suppose that $T \in \mathcal{L}(V)$. Prove that if U_{1}, \cdots, U_{m} are subspaces of V invariant under T, then $U_{1}+\cdots+U_{m}$ is also invariant under T.

Suppose u is in $U_{1}+\cdots+U_{m}$.

Then, by definition of $U_{1}+\cdots+U_{m}, u=u_{1}+\cdots+u_{m}$, where each u_{i} is in U_{i}.

Then:

$$
T(u)=T\left(u_{1}+\cdots+u_{m}\right)=T\left(u_{1}\right)+\cdots+T\left(u_{m}\right)
$$

But since each U_{i} is invariant under T and u_{i} is in $U_{i}(i=1, \cdots, m)$, we have that $T\left(u_{i}\right)$ is in $U_{i}(i=1, \cdots, m)$.

And hence $T(u)=v_{1}+\cdots+v_{m}$, where $v_{i}=T\left(u_{i}\right) \in U_{i}(i=1, \cdots, m)$, and hence by definition of $U_{1}+\cdots+U_{m}$, we get that $T(u)$ is in U.

Hence U is invariant under T.
(3) Give an example of an operator whose matrix with respect to some basis contains only nonzero numbers on the diagonal, but the operator is not invertible.

Let $V=\mathbb{R}^{2}$ and define $T: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ by:

$$
T(x, y)=(x+y, x+y)
$$

First, let's find the matrix A of T with respect to the standard basis $\{(1,0),(0,1)\}$ of \mathbb{R}^{2}.

$$
\begin{aligned}
& T(1,0)=(1,1)=\mathbf{1}(1,0)+\mathbf{1}(0,1) \\
& T(0,1)=(1,1)=\mathbf{1}(1,0)+\mathbf{1}(0,1)
\end{aligned}
$$

Therefore, by definition of the matrix of a linear transformation, we get that:

$$
A=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]
$$

Notice that A indeed contains only nonzero numbers on the diagonal.
However, T is not invertible, because for example, even though $(1,-1) \neq$ $(0,0)$, we have $T(1,-1)=(1+(-1), 1+(-1))=(0,0)$. Hence T is not one-to-one, and hence T is not invertible!

[^0]: Date: Wednesday, March 20th, 2013.
 ${ }^{1}$ Write this!!!

